PyTorch 实现 Stable Diffusion LoRA 训练脚本:从数据预处理到模型修改与训练循环

> 本文详细介绍了如何使用 PyTorch 从零开始编写 Stable Diffusion LoRA 训练脚本,包括数据预处理、模型修改、训练循环、参数保存与加载等关键步骤。特别强调了 LoRA 层的手动实现和在 UNet 的 Cross-Attention 层注入 LoRA 的原因,以及在其他层应用 LoRA 的可能性和注意事项。此外,还提供了代码示例和参数效率的讨论,帮助读者深入理解 LoRA 在 Stable Diffusion 微调中的应用。

> [!reasoning]-

>